top of page

Dotés d'accéléromètres, de gyroscopes et capables de recevoir les signaux GPS, les smartphones sont les outils idéaux pour étudier la mécanique et le mouvement. Avec l'application gratuite FizziQ, réalisez des expériences sur les mouvements rectilignes, le mouvements uniformes, le calcul de la gravité, le calcul d'accélération centripète, et bien d'autres expériences passionnantes.

Le mouvement et la mécanique

Capture d’écran 2020-09-10 à 10.28.08.png

Nos activités sur le mouvement

Mesurer la vitesse du son avec un bruit blanc ou rose

YouTube_social_white_squircle.svg.png

Niveau :

Lycée

Si plusieurs fréquences sont émises simultanément dans une cavité, les harmoniques de la fréquence de résonance de la cavité seront amplifiées par rapport aux autres fréquences émises. On utilise cette propriété pour mesurer la vitesse du son en utilisant un bruit blanc ou rose émis par un smartphone à travers un tube et en mesurant les fréquences qui sont amplifiées. Cette expérience est toujours étonnante pour les élèves et leur permet de mieux comprendre les phénomènes de résonance de Helmholtz, ainsi que les caractéristiques sonores du bruit blanc. On pourra également utiliser un bruit rose à la place du bruit blanc.

Mesurer la vitesse du son en débouchant une bouteille de vin

YouTube_social_white_squircle.svg.png

Niveau :

Lycée

Quand on débouche une bouteille de vin, on entend un son caractéristique dont la fréquence dépend du volume d'air du goulot et de la vitesse du son. Ce son est du à la résonance de l'air dans le goulot. En mesurant cette fréquence et en estimant le volume d'air, on peut estimer la vitesse du son. La fréquence peut être aisément calculée avec le fréquencemètre de l'application FizziQ. Attention, cette expérience ne peut pas vraiment être reproduite !

Utiliser la loi des sinus pour mesurer les longueurs d’un triangle

YouTube_social_white_squircle.svg.png

Niveau :

Lycée

En utilisant le théodolite, les élèves utilisent la loi des sinus pour mesurer les longueurs d'un triangle dans la cour de récréation. Cette mise en pratique permet une acquisition rapide et expérimentale d'un concept qui est souvent abstrait, et il peut être fait indifféremment avec une tablette ou un smartphone.

Analyser les incertitudes de mesures

YouTube_social_white_squircle.svg.png

Niveau :

Lycée

Toute mesure, en physique ou dans d’autres disciplines, contient une part d'incertitude, qui provient par exemple de la précision intrinsèque des instruments de mesure utilisés ou du protocole d’expérimentation. Dans cette activité, l’élève utilise son smartphone pour mesurer différentes grandeurs physique (par exemple le champ magnétique ou la vitesse de rotation lorsqu’il effectue un tour sur lui-même) et il étudie la distribution des résultats et observe comme varient moyenne et écart-type

Trajectoire d'un ballon de basket lors d'un tir

YouTube_social_white_squircle.svg.png

Niveau :

Lycée

Dans cette activité, l'élève étudie la trajectoire d'un ballon par analyse cinématique d'une vidéo d'un tir. Il trouvera une échelle appropriée puis pointera les différentes positions. En ajoutant les positions calculées à son cahier, il déterminera le type de trajectoire de la balle, puis en utilisant l'outil de lissage, il calculera l'équation de la courbe et confirmera son intuition sur la forme de la courbe.

Etude de la trajectoire d'un ballon de football

YouTube_social_white_squircle.svg.png

Niveau :

Collège

L'élève réalise l'étude cinématique d'un tir au but à partir d'une vidéo de la bibliothèque de vidéos cinématique. Il analyse la trajectoire pour déterminer si elle est rectiligne, et la vitesse pour vérifier que le mouvement du ballon est uniforme. La prise en main de l'analyse cinématique est entièrement décrite dans le protocole.

What is the link between notes and sound frequencies

YouTube_social_white_squircle.svg.png

Niveau :

Middle School

Using sounds from the sound library and measuring the fundamental frequency, the student calculates what the frequencies of the different musical notes are, how those notes are distributed within an octave, and what is the relationship between them. notes of different octaves. At the end of this study, the student tries to find the notes of a piece of music by identifying their frequencies.

Conservation de l'énergie pour un pendule (étude cinématique)

YouTube_social_white_squircle.svg.png

Niveau :

Lycée

Le physicien Huygens au 17ème siècle est le premier à caractériser le mouvement d'un pendule simple. Dans l'activité proposée, à partir d'un enregistrement vidéo du mouvement d'un pendule disponible sur le site FizziQ.org, nous proposons l'étude cinématique d'un pendule qui permet de montrer de manière concrète le lien entre énergie potentielle et énergie cinétique. Il est possible pour le professeur ou les élèves de créer leur propre vidéo à étudier.

Kinematics analysis of the landing speed of a rocket

YouTube_social_white_squircle.svg.png

Niveau :

High School

What is the landing program for a Space X rocket? Using the Kinematics module, the student analyzes the descent movement of a Falcon 9 rocket on a barge in the open sea. He notes that the descent speed of the rocket is linear. Why such a downhill goal? Is it more efficient?

How does distance reduce noise level ?

YouTube_social_white_squircle.svg.png

Niveau :

High School

It is often mentioned in textbooks that the sound decreases with the square of the distance, but few experiments allow this to be verified. In this protocol, the student uses the sound of white noise from the sound library which achieves very stable and precise results. The activity opens up discussions on the risks of noise for health and the irremediable consequences for the body of a sound trauma.

Relation entre niveau sonore et distance à la source

YouTube_social_white_squircle.svg.png

Niveau :

Lycée

Dans cette activité, l'élève va étudier la relation entre l'intensité sonore et la distance entree l'émetteur et le récepteur. Pour vérifier cette relation il est essentiel d'utiliser un bruit blanc car sinon des interférences peuvent se produire due à la réflexion des ondes sonores sur les parties autour du dispositif. Dans ce protocole, l'élève utilise le son du bruit blanc de la bibliothèque de son qui permet d'obtenir des résultats très stables et précis. L'activité permet d'ouvrir des discussions sur les risques du bruit pour la santé et les conséquences irrémédiables pour l'organisme d'un traumatisme sonore.

Calcul de la valeur g par analyse de la chute libre

YouTube_social_white_squircle.svg.png

Niveau :

Lycée

Galilée est le premier à documenter le fait que la distance parcourue par un objet durant une chute est proportionnelle au carré du temps écoulé. Il détermine ainsi la valeur de la pesanteur terrestre. L'élève reproduit cette expérience avec son portable. Il ou elle mesure le temps que met un objet à tomber en enregistrant les valeurs de l'accélération linéaire mesurées par son smartphone. Il ou elle en déduit une valeur de l'apesanteur à partir de l'équation horaire de la chute libre.

Etude de la relations entre notes de musique et fréquences

YouTube_social_white_squircle.svg.png

Niveau :

Cycle 4

En utilisant les sons de la bibliothèque de son et la mesure de la fréquence fondamentale, l'élève calcule quelles sont les fréquences des différentes notes de musique, comment ces notes sont réparties au sein d'une octave, et quelle est la relation entre les notes de différentes octaves. A l'issue de cette étude, l'élève essaie de retrouver les notes d'un morceau de musique en identifiant leurs fréquences.

The sound of a bell is very special. Find out why.

YouTube_social_white_squircle.svg.png

Niveau :

High School

The sounds of the bells are quite special because they are inharmonic. This differentiates them from other musical instruments. In this protocol, the student studies the difference between the frequency spectrum of the sound of an oboe and that of a bell. He notes that the frequencies of the sound of the bells are not harmonics, unlike the sound of the oboe. This protocol familiarizes the student with the notion of harmonics and frequency spectrum.

Est-il possible de ses déplacer en ligne droite sans boussole ?

YouTube_social_white_squircle.svg.png

Niveau :

Cycle 4

A travers l'étude du robot Perseverance, l'élève étudie la notion de mouvement rectiligne. Il utilisera l'accéléromètre, le gyroscope, ou le luxmètre pour réfléchir sur le fonctionnement autonome d'un robot. Le protocole permet à l'élève de se poser de multiple questions sur le mouvement autonome, un sujet très actuel.

Measure the speed of sound with a smartphone

YouTube_social_white_squircle.svg.png

Niveau :

High School

The speed of sound calculation uses triggers. This practical work allows the student to get comfortable with programmatic tools to build his experience while at the same time building a scientific reasoning for the calculation.

Mesure de la vitesse du son avec un smartphone

YouTube_social_white_squircle.svg.png

Niveau :

Lycée

Cette activité permet à l'élève de mesurer la vitesse du son en utilisant deux téléphones portables. Au cours de cette activité, l'élève découvre comment créer un chronomètre sonore avec les déclencheurs, puis le concept de synchronisation des horloges de deux smartphones. Cette activité permet d'obtenir des résultats précis à 5% de la vitesse du son dans l'air.

Centripetal acceleration and rotational speed

YouTube_social_white_squircle.svg.png

Niveau :

High School

By studying the practical case of a smartphone placed in a salad spinner, the student calculates the relationship between rotation and centrifugal acceleration. There will also be questions about the measurement limits of the instruments.

Understand how a pedometer works and use the accelerometer to build one.

YouTube_social_white_squircle.svg.png

Niveau :

Middle School

By studying the functioning of the pedometer, the student studies the movement of his body using the accelerometer, works on the notion of pattern, and uses the notion of threshold to create his own pedometer.

Measurement of the doppler effect using the Fizziq sound library.

YouTube_social_white_squircle.svg.png

Niveau :

High School

In this protocol, the student uses a sound recording of a moving vehicle to calculate its speed by measuring the Doppler effect. The recording is present in the Sounds Library of the application.

Why tree leaves change color in autumn

YouTube_social_white_squircle.svg.png

Niveau :

Middle School

The student uses the colorimeter to highlight the different pigments present in a tree leaf

Testing the hypothesis of a Galilean system in practical life

YouTube_social_white_squircle.svg.png

Niveau :

Middle School

Introduction to the notion of Galilean referential. The students discovers the different ways of proving that a movement is linear and uniform. He/she discovers the use of recording two data and the XY graph.

Why does green moss only grows on one side of tree trunks?

YouTube_social_white_squircle.svg.png

Niveau :

Elementary

The student uses the compass and the luxmeter to analyze his environment.

Active noise reduction headset technology helps reduce ambient noise. How does this technology work?

YouTube_social_white_squircle.svg.png

Niveau :

High School

The student discovers the wave nature of sound waves and interference. He deduces how the noise canceling features work on modern headphones.

Créer un chronomètre sonore avec les déclencheurs

YouTube_social_white_squircle.svg.png

Niveau :

Lycée

Les déclencheurs sont un moyen puissant de créer de nouveaux outils d'expérimentations et d'initier les étudiants aux notions de programmation. Dans ce TP l'élève crée un chronomètre sonore qui lui permet de commencer ou d'arrêter une mesure en calquant dans ses mains. Il pourra utiliser ce nouvel outil pour mesurer la vitesse du son

Mesurer la vitesse du son par la fréquence de résonance d'un tube

YouTube_social_white_squircle.svg.png

Niveau :

Lycée

La vitesse du son peut être calculée en utilisant la résonance acoustique d'un tube, un phénomène dans lequel un système acoustique amplifie les ondes sonores dont la fréquence correspond à l'une de ses propres fréquences de vibration. Les fréquences de résonance de certaines cavités comme un cylindre ou une bouteille sont faciles à déterminer et dépendent de la vitesse du son et de la forme de l’objet. En mesurant la fréquence de résonance, pour certains types de cavité, on peut ainsi déduire la vitesse du son. Dans ce protocole, l'élève utilise une éprouvette pour déterminer les paramètres qui semblent influer sur la fréquence de résonance puis utilise la formule de la fréquence de résonance pour calculer la vitesse du son.

Etude expérimentale de la cycloïde

YouTube_social_white_squircle.svg.png

Niveau :

Lycée

Dans cette activité, l'élève utilise l’outil cinématique pour étudier une cycloïde. Cette courbe représente la trajectoire d’un point fixé à un cercle qui roule sans glissement et à vitesse constante sur une route. A partir d’une vidéo d’un vélo, d’une voiture ou d’un camion par exemple, ou à partir de la vidéo d'un cycloid, l’élève pourra, via l’outil cinématique de FizziQ, visualiser la trajectoire et mesurer ses principales caractéristiques. On peut aussi voir comment se déforme cette courbe en faisant varier la hauteur du point pris sur le cercle.

Mesurer la distance entre 2 points par triangulation

YouTube_social_white_squircle.svg.png

Niveau :

Lycée

Le but de cette expérience est de mesurer la distance entre 2 points éloignés à l’aide de la méthode de triangulation. Dans un premier temps, l’élève réaliser le protocole sur la loi des sinus. La méthode de calcul des longueurs d’un triangle peut être utilisée pour mesurer de très longues distances : l’arc de Struve représente le plus grand réseau de triangulation : il s’étend d’Hammerfest en Norvège jusqu’à la Mer Noire sur une longueur de plus de 2820 kms. L’élève pourra mettre en œuvre cette méthode sur une plus petite échelle, par exemple dans la cour de récréation en cherchant à y mesurer la plus grande distance. Avant la mise en pratique et le calcul des différents angles avec le théodolite, il est conseillé de commencer par faire un schéma sur une feuille de papier en y reportant les différents points qui serviront aux mesures et de visualiser la video sur la triangulation.

Analyse cinématique des mouvements d'une perchiste

YouTube_social_white_squircle.svg.png

Niveau :

Lycée

L'analyse cinématique du mouvement d'une perchiste permet d'étudier de nombreux aspects des lois de la mécanique : conservation de l'énergie, énergie élastique, trajectoire parabolique, ... Cette analyse permet de mesurer la complexité de ce sport, et d'envisager des suggestions pour l'athlète pour améliorer ses performances.

Calcul de la vitesse d'un skieur par analyse cinématique

YouTube_social_white_squircle.svg.png

Niveau :

Collège

Cette activité a pour but de calculer par l'analyse cinématique la vitesse du skieur John Clarey pendant les JO d'hiver de 2022. L'élève apprendra a prendre en main le module cinématique, et à conduire l'analyse. Il calculera les vitesses horizontales et verticales de l'athlète, puis la norme de cette vitesse, qu'il pourra comparer à la vitesse officielle calculée.

Energy conservation in a pendulum (using a measure of centripetal acceleration)

YouTube_social_white_squircle.svg.png

Niveau :

High School

In this activity, students use a smartphone as a pendulum to experimentally confirm the law of conservation of mechanical energy. The analysis includes a theoretical phase which consists in identifying the formula of the centripetal acceleration as a function of the height of the release. During the practical phase, students measure the centripetal acceleration of the smartphone when released at different heights, and check that the relationship is linear. This experiment uses the accelerometer of the smartphone.

Spectrum analysis of white noise

YouTube_social_white_squircle.svg.png

Niveau :

High School

A noise is a sound made up of a multitude of sounds of random frequencies, volumes and durations. White noise is a particular noise whose spectral components have equivalent energy per cycle (in hertz). This results in a "flat" spectrum when plotting the frequency spectrum. The study of white noise is interesting because it allows us to make an analogy with white light. The very simple protocol shows the student the random characteristic of the frequencies that make up white noise and trains them to ask questions about the concept of noise, and the analogy between sound and light.

Analyse cinématique de la vitesse d'une fusée

YouTube_social_white_squircle.svg.png

Niveau :

Lycée

Quel est le programme d'atterrissage d'une fusée Space X ? A l'aide du module de Cinématique, l'élève analyse le mouvement de descente d'une fusée Falcon 9 sur une barge en pleine mer. Il constate que la vitesse de descente de la fusée est linéaire. Pourquoi un tel objectif de descente ? Est-ce plus efficace ?

Compute the value of gravity g by measuring a free fall

YouTube_social_white_squircle.svg.png

Niveau :

High School

Galileo is the first to document that the distance an object travels during a fall is proportional to the square of the elapsed time. It thus determines the value of the earth's gravity. The student reproduces this experience on his laptop. He or she measures the time it takes for an object to fall by recording the values of linear acceleration measured by his or her smartphone. He or she deduces a value for weightlessness from the hourly equation of free fall.

Energy conservation for a pendulum (kinematics analysis)

YouTube_social_white_squircle.svg.png

Niveau :

High School

The 17th century physicist Huygens is the first to characterize the motion of a simple pendulum. In the proposed activity, from a video recording of the movement of a pendulum available on the FizziQ.org site, we propose a kinematics analysis of a pendulum. Analyse kinetic energy, potential energy and mechanical energy of a pendulum. Teachers and students can also create their own video to study.

Conservation de l'énergie pour un pendule (mesure de l'accélération centripète)

YouTube_social_white_squircle.svg.png

Niveau :

Lycée

Dans cette activité, l’élève utilise un smartpone comme pendule pour confirmer expérimentalement la loi de la conservation de l’énergie mécanique. L’analyse comporte un phase théorique qui consiste à identifier la formule de l’accélération centripète en fonction de la hauteur du lâcher. Durant la phase pratique, l’élève mesure l’accélération centripète du smartphone après un lâcher à différentes hauteurs, et vérifie que la relation est linéaire. Cette expérience utilise l’accéléromètre du téléphone portable.

Déterminer la fréquence cardiaque en analysant les mouvements de la cage thoracique avec un smartphone

YouTube_social_white_squircle.svg.png

Niveau :

Cycle 4

L'élève découvre comment l'accéléromètre permet de mesurer de très petites variations de mouvements comme par exemple les battements de son coeur. Il en déduit son rythme cardiaque et créer un graphique qui ressemble à un électrocardiogramme

Quelle sont les fréquences qui composent un bruit blanc ?

YouTube_social_white_squircle.svg.png

Niveau :

Cycle 4

Cette activité permet à l'élève de mieux comprendre les concepts de fréquence et de spectre de fréquence en analysant le bruit blanc présent dans la bibliothèque de son ou tout bruit blanc trouvé sur internet. Un bruit blanc est un son composé d'une multitude de sons de fréquences, de volume et de durées aléatoires. Un bruit blanc est un bruit particulier dont les composantes spectrales ont une énergie équivalente par cycle (en hertz). Cela se traduit par un spectre « plat » lorsqu’on en trace le spectre de fréquences. L'étude du bruit blanc est intéressante car elle permet de faire une analogie avec la lumière blanche. Le protocole très simple montre à l'élève la caractéristique aléatoire des fréquences qui composent le bruit blanc et l'entraîne à se poser des questions sur la notion de bruit, et l'analogie entre son et lumière.

Sons harmoniques et non harmoniques avec l'étude du son des cloches

YouTube_social_white_squircle.svg.png

Niveau :

Cycle 4

Les sons des cloches sont tout a fait particuliers car ils sont inharmoniques. Ceci les différencie des autres instruments de musique. Dans ce protocole, l'élève étudie la différence entre le spectre de fréquence du son d'un hautbois et celui d'une cloche. Il constate que les fréquences du son de la cloches ne sont pas des harmoniques, contrairement au son du hautbois. Ce protocole permet de familiariser l'élève avec la notion d'harmoniques et de spectre de fréquences. Une extension possible de ce protocole est le protocole sur les battements car l'élève notera peut-être que le son d'une cloche incorpore des phénomènes de battements générés par la combinaison de fréquences très proches.

Analyzes an acoustic effect that is used by many electronic music artists

YouTube_social_white_squircle.svg.png

Niveau :

High School

The study of acoustic beats allows students to easily understand the phenomena of interference on sound waves. The resulting volume oscillation effect produces an effect similar to those used by modern artists in electronic music.

Comment l'effet de battement acoustique est utilisé en musique électronique

YouTube_social_white_squircle.svg.png

Niveau :

Lycée

L'étude des battements acoustiques permet aux étudiants de comprendre simplement les phénomènes d'interférence sur les ondes sonores. L'effet d'oscillation de volume qui en résulte produit un effet similaire à ceux utilisés par les artistes modernes en musique électronique.

Learn about the concept of linear acceleration and how to measure it

YouTube_social_white_squircle.svg.png

Niveau :

Middle School

In this discovery module, the student studies the notion of linear acceleration and the different components of this acceleration. He discovers that speeding up and slowing down are equivalent.

Study the capacity of several diffusing objects to diffuse light more or less well

YouTube_social_white_squircle.svg.png

Niveau :

Middle School

Study the capacity of several diffusing objects to diffuse light more or less well

Calculation of frequencies and history of tuning forks

YouTube_social_white_squircle.svg.png

Niveau :

Middle School

El estudiante encuentra diferentes formas de analizar la frecuencia de un sonido comparando el sonido de diferentes diapasones mientras aprende la historia de la música.

Why does the same note sound different depending on the musical instrument that produces it?

YouTube_social_white_squircle.svg.png

Niveau :

Middle School

The student studies the sound spectrum emitted by different instruments and tries to analyze what constitutes the particular timbre of a musical instrument.

Analyse how humans pronounce vowels and build a training tool for singers

YouTube_social_white_squircle.svg.png

Niveau :

High School

Using the practical case of the pronunciation of vowels, the student analyzes the harmonics created by our vocal apparatus, and deduces how it works.

Become the programmer of the robot Opportunity on Mars and find the different ways to ensure a linear movement.

YouTube_social_white_squircle.svg.png

Niveau :

Middle School

By putting themselves in the shoes of an Opportunity robot programmer on Mars, the student discovers the means to verify that a movement is rectilinear.

Use triggers to create a useful measuring tool

YouTube_social_white_squircle.svg.png

Niveau :

High School

Triggers are a powerful way to create new tools for experimentation and to introduce students to programming concepts.

Learn about the concept of linear acceleration and how to measure it

YouTube_social_white_squircle.svg.png

Niveau :

High School

In this discovery module, the student studies the notion of linear acceleration and the different components of this acceleration. He discovers that speeding up and slowing down are equivalent.

Expérience sur la diffusion de la lumière

YouTube_social_white_squircle.svg.png

Niveau :

Cycle 3

Dans cette activité destinée aux élèves du cycle 3 et 4, l'élève étudie la capacité de plusieurs objets diffusants à diffuser plus ou moins bien la lumière. Il comprend pourquoi certains objets réfléchissent plus que d'autres la lumière et pourquoi les gilets jaunes sont important pour la sécurité routière.
bottom of page