top of page

Nossas atividades energéticas

Simulation d’un vol parabolique pour explorer l’apesanteur et la chute libre.

Niveau :

Lycée

YouTube_social_white_squircle.svg.png

Etude du rythme cardiaque avec un smartphone transformé en stéthoscope

Niveau :

Collège

YouTube_social_white_squircle.svg.png

Utilise la couleur de ton doigt pour mesurer ton rythme cardiaque.

Niveau :

Collège, Lycée

YouTube_social_white_squircle.svg.png

Principe d’équivalence d’Einstein en utilisant l’accéléromètre d’un smartphone

Niveau :

Lycée

YouTube_social_white_squircle.svg.png

Analyse de l'illusion sonore de Shepard.

Niveau :

Lycée

YouTube_social_white_squircle.svg.png

Mesure de g par l’analyse cinématique d’une trajectoire parabolique.

Niveau :

Lycée

YouTube_social_white_squircle.svg.png

Loi de conservation de l'énergie pour une collision

Niveau :

Lycée

YouTube_social_white_squircle.svg.png

Etude de la loi de Biot-Savart pour une bobine

Niveau :

Lycée

YouTube_social_white_squircle.svg.png
Cette activité @@ à l’élève de visualiser le lien entre courant électrique et champ magnétique en mesurant l’effet d’une bobine avec un magnétomètre. Il apprend à manipuler un capteur, analyser des données expérimentales et vérifier une loi physique fondamentale comme la loi de Biot-Savart.

Trouver la direction du nord en utilisant un magnétomètre

Niveau :

Collège

YouTube_social_white_squircle.svg.png
Le champ magnétique terrestre est un phénomène invisible mais essentiel, utilisé en navigation, en géophysique et dans de nombreuses applications scientifiques et technologiques. Grâce au magnétomètre d’un smartphone, cette expérience permet aux élèves de trouver le nord magnétique de manière expérimentale et de comprendre comment les boussoles fonctionnent. Cette manipulation les amène à observer comment les capteurs numériques mesurent un phénomène physique, à analyser les composantes d’un champ vectoriel, et à relier leurs résultats à une application concrète : l’orientation sur Terre.

Etude de la loi des carrés inverse pour l'éclairement

Niveau :

Lycée

YouTube_social_white_squircle.svg.png
Cette activité proposée une exploration pratique de la loi du carré inverse, un pilier de la physique lumineuse. En se servant d'un smartphone et de l'application FizziQ pour mesurer l'éclairement lumineux, les élèves découvrent de manière interactive comment l'intensité lumineuse diminue avec l'augmentation de la distance à la source lumineuse. Cette activité, en combinant l'aspect expérimental avec l'analyse mathématique, encourage non seulement la compréhension conceptuelle mais cultive aussi l'esprit d'analyse et de synthèse, rendant l'apprentissage de la physique à la fois accessible et captivant.

Construire un dispositif pour déterminer avec précision la période d'un pendule

Niveau :

Collège, Lycée

YouTube_social_white_squircle.svg.png
Cette activité invite les élèves à explorer et à questionner les principes de la physique derrière le mouvement pendulaire. Après avoir choisi un type de pendule (pendule de Newton ou pendule simple), il détermine un moyen de mesurer très précisément sa période grâce à FizziQ. En expérimentant avec différentes hauteurs de lâcher, les élèves vérifient si ces variations influent sur la période du pendule. L'intérêt pédagogique est multiple : les élèves construisent un dispositif précis, appliquent la méthode scientifique en testant une hypothèse contre les prédictions théoriques, affinent leurs compétences en mesure et en analyse de données, et connectent leurs découvertes au développement historique des technologies de mesure du temps.

Etude de l'effet Doppler pour un pendule sonore ou une balançoire

Niveau :

Lycée

YouTube_social_white_squircle.svg.png
Cette activité pédagogique invite les élèves à étudier l'effet Doppler via un pendule sonore créé en suspendant un smartphone émettant un son. Ils examineront les variations de fréquence dues au mouvement du pendule, mettant en pratique des notions telles que fréquence, période, et vitesse. L'analyse de la courbe de fréquence asymétrique stimule la réflexion critique. L'intégration de la technologie renforce l'expérience d'apprentissage, encourageant une démarche scientifique active et la communication des résultats dans un cahier d'expérience. Cette expérience peut également être réalisée en utilisant une balançoire sur laquelle un élève tient une source sonore.

Energie mécanique et loi de conservation de l'énergie pour un pendule de Newton

Niveau :

Collège, Lycée

YouTube_social_white_squircle.svg.png
Le pendule de Newton est un pendule se composant de cinq billes et permettant d'illustrer les théories de conservation de la quantité de mouvement et de l'énergie. Le comportement de ce système a été étudié à la fin du XVIIème siècle par les scientifiques John Wallis, Christopher Wren et Christiaan Huygens. Dans cette expérience, nous utilisons une vidéo de pendule de Newton pour tester la loi de conservation de l'énergie par analyse cinématique. Les calculs permettent d'estimer le coefficient de restitution du pendule. Si les élèves disposent d'un pendule de Newton, ils peuvent également faire leur propre vidéo et l'utiliser pour faire l'analyse cinématique.

Un avion grimpe t-il plus vite qu'un ascenseur ?

Niveau :

Lycée

YouTube_social_white_squircle.svg.png
L'ascenseur de la tour de Shanghai est le plus rapide au monde avec un vitesse de 20 m/s. En utilisant l'altimètre de FizziQ, on estime la vitesse ascensionnelle d'un avion de ligne et on détermine si cette vitesse est supérieure à celle de l'ascenseur de la tour de Shanghai.

Est-on moins lourd en avion ?

Niveau :

Lycée

YouTube_social_white_squircle.svg.png
A l'occasion d'un voyage en avion, on peut faire une expérience qui permet de vérifier que l'accélération de la pesanteur, g, est bien dépendante de l'altitude comme le prédite la théorie. Pour réaliser cette expérience, on utilise la mesure de l'accélération absolue d'un smartphone pour mesurer g avant le décollage et quand l'avion a atteint sa vitesse de croisière.

Mesurer la vitesse du son par la fréquence de résonance d'un tube

Niveau :

Lycée

YouTube_social_white_squircle.svg.png
La vitesse du son peut être calculée en utilisant la résonance acoustique d'un tube, un phénomène dans lequel un système acoustique amplifie les ondes sonores dont la fréquence correspond à l'une de ses propres fréquences de vibration. Les fréquences de résonance de certaines cavités comme un cylindre ou une bouteille sont faciles à déterminer et dépendent de la vitesse du son et de la forme de l’objet. En mesurant la fréquence de résonance, pour certains types de cavité, on peut ainsi déduire la vitesse du son. Dans ce protocole, l'élève utilise une éprouvette pour déterminer les paramètres qui semblent influer sur la fréquence de résonance puis utilise la formule de la fréquence de résonance pour calculer la vitesse du son.

Etude expérimentale de la cycloïde

Niveau :

Lycée

YouTube_social_white_squircle.svg.png
Dans cette activité, l'élève utilise l’outil cinématique pour étudier une cycloïde. Cette courbe représente la trajectoire d’un point fixé à un cercle qui roule sans glissement et à vitesse constante sur une route. A partir d’une vidéo d’un vélo, d’une voiture ou d’un camion par exemple, ou à partir de la vidéo d'un cycloid, l’élève pourra, via l’outil cinématique de FizziQ, visualiser la trajectoire et mesurer ses principales caractéristiques. On peut aussi voir comment se déforme cette courbe en faisant varier la hauteur du point pris sur le cercle.

Mesurer la distance entre 2 points par triangulation

Niveau :

Lycée

YouTube_social_white_squircle.svg.png
Le but de cette expérience est de mesurer la distance entre 2 points éloignés à l’aide de la méthode de triangulation. Dans un premier temps, l’élève réaliser le protocole sur la loi des sinus. La méthode de calcul des longueurs d’un triangle peut être utilisée pour mesurer de très longues distances : l’arc de Struve représente le plus grand réseau de triangulation : il s’étend d’Hammerfest en Norvège jusqu’à la Mer Noire sur une longueur de plus de 2820 kms. L’élève pourra mettre en œuvre cette méthode sur une plus petite échelle, par exemple dans la cour de récréation en cherchant à y mesurer la plus grande distance. Avant la mise en pratique et le calcul des différents angles avec le théodolite, il est conseillé de commencer par faire un schéma sur une feuille de papier en y reportant les différents points qui serviront aux mesures et de visualiser la video sur la triangulation.

Analyse cinématique des mouvements d'une perchiste

Niveau :

Lycée

YouTube_social_white_squircle.svg.png
L'analyse cinématique du mouvement d'une perchiste permet d'étudier de nombreux aspects des lois de la mécanique : conservation de l'énergie, énergie élastique, trajectoire parabolique, ... Cette analyse permet de mesurer la complexité de ce sport, et d'envisager des suggestions pour l'athlète pour améliorer ses performances.

Calcul de la vitesse d'un skieur par analyse cinématique

Niveau :

Collège

YouTube_social_white_squircle.svg.png
Cette activité a pour but de calculer par l'analyse cinématique la vitesse du skieur John Clarey pendant les JO d'hiver de 2022. L'élève apprendra a prendre en main le module cinématique, et à conduire l'analyse. Il calculera les vitesses horizontales et verticales de l'athlète, puis la norme de cette vitesse, qu'il pourra comparer à la vitesse officielle calculée.

Conservation de l'énergie pour un pendule (étude cinématique)

Niveau :

Lycée

YouTube_social_white_squircle.svg.png
Le physicien Huygens au 17ème siècle est le premier à caractériser le mouvement d'un pendule simple. Dans l'activité proposée, à partir d'un enregistrement vidéo du mouvement d'un pendule disponible sur le site FizziQ.org, nous proposons l'étude cinématique d'un pendule qui permet de montrer de manière concrète le lien entre énergie potentielle et énergie cinétique. Il est possible pour le professeur ou les élèves de créer leur propre vidéo à étudier.

Relation entre niveau sonore et distance à la source

Niveau :

Lycée

YouTube_social_white_squircle.svg.png
Dans cette activité, l'élève va étudier la relation entre l'intensité sonore et la distance entree l'émetteur et le récepteur. Pour vérifier cette relation il est essentiel d'utiliser un bruit blanc car sinon des interférences peuvent se produire due à la réflexion des ondes sonores sur les parties autour du dispositif. Dans ce protocole, l'élève utilise le son du bruit blanc de la bibliothèque de son qui permet d'obtenir des résultats très stables et précis. L'activité permet d'ouvrir des discussions sur les risques du bruit pour la santé et les conséquences irrémédiables pour l'organisme d'un traumatisme sonore.

Calcul de la valeur g par analyse de la chute libre

Niveau :

Lycée

YouTube_social_white_squircle.svg.png
Galilée est le premier à documenter le fait que la distance parcourue par un objet durant une chute est proportionnelle au carré du temps écoulé. Il détermine ainsi la valeur de la pesanteur terrestre. L'élève reproduit cette expérience avec son portable. Il ou elle mesure le temps que met un objet à tomber en enregistrant les valeurs de l'accélération linéaire mesurées par son smartphone. Il ou elle en déduit une valeur de l'apesanteur à partir de l'équation horaire de la chute libre.

Etude de la relations entre notes de musique et fréquences

Niveau :

Cycle 4

YouTube_social_white_squircle.svg.png
En utilisant les sons de la bibliothèque de son et la mesure de la fréquence fondamentale, l'élève calcule quelles sont les fréquences des différentes notes de musique, comment ces notes sont réparties au sein d'une octave, et quelle est la relation entre les notes de différentes octaves. A l'issue de cette étude, l'élève essaie de retrouver les notes d'un morceau de musique en identifiant leurs fréquences.

Sons harmoniques et non harmoniques avec l'étude du son des cloches

Niveau :

Cycle 4

YouTube_social_white_squircle.svg.png
Les sons des cloches sont tout a fait particuliers car ils sont inharmoniques. Ceci les différencie des autres instruments de musique. Dans ce protocole, l'élève étudie la différence entre le spectre de fréquence du son d'un hautbois et celui d'une cloche. Il constate que les fréquences du son de la cloches ne sont pas des harmoniques, contrairement au son du hautbois. Ce protocole permet de familiariser l'élève avec la notion d'harmoniques et de spectre de fréquences. Une extension possible de ce protocole est le protocole sur les battements car l'élève notera peut-être que le son d'une cloche incorpore des phénomènes de battements générés par la combinaison de fréquences très proches.

Étude de la dépressurisation et des lois des gaz via les toilettes d’avion.

Niveau :

Lycée

YouTube_social_white_squircle.svg.png

Comparaison des temps de réaction à un son selon que les yeux sont ouverts ou fermés

Niveau :

Collège

YouTube_social_white_squircle.svg.png

Mesure de la hauteur d'un arbre en utilisant le théodolite et la trigonométrie.

Niveau :

Cycle 4, Collège

YouTube_social_white_squircle.svg.png

Mesure la constante de gravité g et son variation selon la latitude.

Niveau :

Lycée

YouTube_social_white_squircle.svg.png

Analyse de la précision d'un capteur

Niveau :

Lycée

YouTube_social_white_squircle.svg.png

Explore comment l'énergie se propage sous forme d'ondes sismiques lors de l'impact d'une météorite en simulant des chutes de billes.

Niveau :

Collège

YouTube_social_white_squircle.svg.png

Créée un altimètre avec un capteur de pression atmosphérique

Niveau :

Collège, Lycée

YouTube_social_white_squircle.svg.png

Utiliser le magnétomètre de Fizziq comme détecteur de métal

Niveau :

Cycle 3, Collège

YouTube_social_white_squircle.svg.png
Cette manipulation permet aux élèves d’explorer l’interaction entre les matériaux et le champ magnétique terrestre, en observant comment les objets ferromagnétiques modifient localement les mesures du magnétomètre. Elle illustre des concepts du magnétisme et introduit des applications pratique de l'utilisation du magnétomètre comme l'archéologie sous-marine

Déterminer la latitude magnétique à l'aide du magnétomètre et de l'inclinomètre

Niveau :

Collège

YouTube_social_white_squircle.svg.png
Cette expérience permet aux élèves de mesurer l'inclinaison magnétique avec un smartphone, en utilisant un magnétomètre et un inclinomètre, et d'en déduire la latitude magnétique du lieu.

Athlétisme : mesure de la vitesse d'éjection lors du lancer de marteau

Niveau :

Lycée

YouTube_social_white_squircle.svg.png
L'activité offre une approche pratique pour comprendre la transformation du mouvement rotatif en mouvement linéaire, un concept clé en physique à travers l'étude du lancer de marteau, discipline olympique. En utilisant des outils d'analyse cinématique pour étudier une vidéo de lancer de marteau présente dans la bibliothèque cinématique, les élèves calculent la vitesse d'éjection et la confrontent à la vitesse théorique obtenue en utilisant la vitesse de rotation de l'athlète. Cette analyse permet d'identifier d'autres facteurs importants du lancer comme l'angle d'éjection vertical.

Quelles est l'augmentation du niveau sonore quand on additionne deux ondes de même intensité ?

Niveau :

Collège - Lycée

YouTube_social_white_squircle.svg.png
Cette expérience pédagogique utilise trois smartphones pour explorer l'addition de sources sonores et ses effets sur l'intensité sonore, en mettant en lumière des concepts clés de l'acoustique et de la physique du son. Deux smartphones émettent des sons tandis que le troisième analyse l'intensité sonore résultante. Les élèves découvrent la différence entre mesurer le Niveau de Bruit, qui représente une moyenne des intensités sonores, et le Niveau Sonore, qui est une mesure instantanée. Dans un premier temps, on additionnera le son de deux bruits blancs, que l'on trouve dans la bibliothèque de sons de l'application. On calibre d'abord les deux smartphones pour qu'ils produisent la même intensité sonore, puis les élèves observent l'augmentation du niveau sonore lorsqu'on additionne deux sources. Cette augmentation sera proche de 3 dB, résultat que l'on attend.

Trajectoire d'un volant de badminton

Niveau :

YouTube_social_white_squircle.svg.png
La trajectoire d'un volant de badminton est-elle une parabole comme la trajectoire d'une balle de basket par exemple ? Dans cette activité l'élève analyse la vidéo d'un athlète qui lance un volant de badminton et détermine Cette activité a pour but de calculer par l'analyse cinématique la vitesse du skieur John Clarey pendant les JO d'hiver de 2022. L'élève apprendra a prendre en main le module cinématique, et à conduire l'analyse. Il calculera les vitesses horizontales et verticales de l'athlète, puis la norme de cette vitesse, qu'il pourra comparer à la vitesse officielle calculée.

Déterminer le centre de gravité d'un mouvement complexe

Niveau :

Collège, Lycée

YouTube_social_white_squircle.svg.png
Il est en général facile de déterminer le centre de gravité d'une personne debout ou allongée. Mais comment le déterminer quand un athlète effectue des figures complexes qui entraînent des déformations de son corps ? Heureusement, nous savons que le centre de gravité d'un plongeur décrit une parabole. En utilisant cette information, l'élève réalise une analyse cinématique du plongeon d'une athlète, et, par essais successifs, positionne le centre de gravité sur la vidéo jusqu'à obtenir le mouvement parabolique attendu pour ce point.

Calcul de la vitesse de décollage d'un avion de ligne

Niveau :

Lycée

YouTube_social_white_squircle.svg.png
Comment utiliser l'accéléromètre d'un smartphone pour estimer la vitesse de décollage d'un avion ? L'analyse de la courbe donne également des informations intéressantes sur l'efficacité des réacteurs lors du roulage de l'appareil.

Mesurer la vitesse du son par émission d'un bruit dans un tube

Niveau :

Lycée

YouTube_social_white_squircle.svg.png
Si plusieurs fréquences sont émises simultanément dans une cavité, les harmoniques de la fréquence de résonance de la cavité seront amplifiées par rapport aux autres fréquences émises. On utilise cette propriété pour mesurer la vitesse du son en utilisant un bruit blanc ou rose émis par un smartphone à travers un tube et en mesurant les fréquences qui sont amplifiées. Cette expérience est toujours étonnante pour les élèves et leur permet de mieux comprendre les phénomènes de résonance de Helmholtz, ainsi que les caractéristiques sonores du bruit blanc. On pourra également utiliser un bruit rose à la place du bruit blanc.

Mesurer la vitesse du son en débouchant une bouteille de vin

Niveau :

Lycée

YouTube_social_white_squircle.svg.png
Quand on débouche une bouteille de vin, on entend un son caractéristique dont la fréquence dépend du volume d'air du goulot et de la vitesse du son. Ce son est du à la résonance de l'air dans le goulot. En mesurant cette fréquence et en estimant le volume d'air, on peut estimer la vitesse du son. La fréquence peut être aisément calculée avec le fréquencemètre de l'application FizziQ. Attention, cette expérience ne peut pas vraiment être reproduite !

Utiliser la loi des sinus pour mesurer les longueurs d’un triangle

Niveau :

Lycée

YouTube_social_white_squircle.svg.png
En utilisant le théodolite, les élèves utilisent la loi des sinus pour mesurer les longueurs d'un triangle dans la cour de récréation. Cette mise en pratique permet une acquisition rapide et expérimentale d'un concept qui est souvent abstrait, et il peut être fait indifféremment avec une tablette ou un smartphone.

Analyser les incertitudes de mesures

Niveau :

Lycée

YouTube_social_white_squircle.svg.png
Toute mesure, en physique ou dans d’autres disciplines, contient une part d'incertitude, qui provient par exemple de la précision intrinsèque des instruments de mesure utilisés ou du protocole d’expérimentation. Dans cette activité, l’élève utilise son smartphone pour mesurer différentes grandeurs physique (par exemple le champ magnétique ou la vitesse de rotation lorsqu’il effectue un tour sur lui-même) et il étudie la distribution des résultats et observe comme varient moyenne et écart-type

Trajectoire d'un ballon de basket lors d'un tir

Niveau :

Lycée

YouTube_social_white_squircle.svg.png
Dans cette activité, l'élève étudie la trajectoire d'un ballon par analyse cinématique d'une vidéo d'un tir. Il trouvera une échelle appropriée puis pointera les différentes positions. En ajoutant les positions calculées à son cahier, il déterminera le type de trajectoire de la balle, puis en utilisant l'outil de lissage, il calculera l'équation de la courbe et confirmera son intuition sur la forme de la courbe.

Etude de la trajectoire d'un ballon de football

Niveau :

Collège

YouTube_social_white_squircle.svg.png
L'élève réalise l'étude cinématique d'un tir au but à partir d'une vidéo de la bibliothèque de vidéos cinématique. Il analyse la trajectoire pour déterminer si elle est rectiligne, et la vitesse pour vérifier que le mouvement du ballon est uniforme. La prise en main de l'analyse cinématique est entièrement décrite dans le protocole.

Analyse cinématique de la vitesse d'une fusée

Niveau :

Lycée

YouTube_social_white_squircle.svg.png
Quel est le programme d'atterrissage d'une fusée Space X ? A l'aide du module de Cinématique, l'élève analyse le mouvement de descente d'une fusée Falcon 9 sur une barge en pleine mer. Il constate que la vitesse de descente de la fusée est linéaire. Pourquoi un tel objectif de descente ? Est-ce plus efficace ?

Conservation de l'énergie pour un pendule (mesure de l'accélération centripète)

Niveau :

Lycée

YouTube_social_white_squircle.svg.png
Dans cette activité, l’élève utilise un smartpone comme pendule pour confirmer expérimentalement la loi de la conservation de l’énergie mécanique. L’analyse comporte un phase théorique qui consiste à identifier la formule de l’accélération centripète en fonction de la hauteur du lâcher. Durant la phase pratique, l’élève mesure l’accélération centripète du smartphone après un lâcher à différentes hauteurs, et vérifie que la relation est linéaire. Cette expérience utilise l’accéléromètre du téléphone portable.

Déterminer la fréquence cardiaque par les mouvements de la cage thoracique

Niveau :

Cycle 4

YouTube_social_white_squircle.svg.png
L'élève découvre comment l'accéléromètre permet de mesurer de très petites variations de mouvements comme par exemple les battements de son coeur. Il en déduit son rythme cardiaque et créer un graphique qui ressemble à un électrocardiogramme

Quelle sont les fréquences qui composent un bruit blanc ?

Niveau :

Cycle 4

YouTube_social_white_squircle.svg.png
Cette activité permet à l'élève de mieux comprendre les concepts de fréquence et de spectre de fréquence en analysant le bruit blanc présent dans la bibliothèque de son ou tout bruit blanc trouvé sur internet. Un bruit blanc est un son composé d'une multitude de sons de fréquences, de volume et de durées aléatoires. Un bruit blanc est un bruit particulier dont les composantes spectrales ont une énergie équivalente par cycle (en hertz). Cela se traduit par un spectre « plat » lorsqu’on en trace le spectre de fréquences. L'étude du bruit blanc est intéressante car elle permet de faire une analogie avec la lumière blanche. Le protocole très simple montre à l'élève la caractéristique aléatoire des fréquences qui composent le bruit blanc et l'entraîne à se poser des questions sur la notion de bruit, et l'analogie entre son et lumière.

Est-il possible de ses déplacer en ligne droite sans boussole ?

Niveau :

Cycle 4

YouTube_social_white_squircle.svg.png
A travers l'étude du robot Perseverance, l'élève étudie la notion de mouvement rectiligne. Il utilisera l'accéléromètre, le gyroscope, ou le luxmètre pour réfléchir sur le fonctionnement autonome d'un robot. Le protocole permet à l'élève de se poser de multiple questions sur le mouvement autonome, un sujet très actuel.
bottom of page